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Investigations of the Motion of Discrete-Velocity Gases

Abstract: 1) A model of molecular gasdynamics with discrete components of molecular velocity has
been implemented for parallel computation, and two test problems have been calculated. When the
molecular velocity components have integer values, and time is discretized for digital computation, the

particles move on a regular array of points and the gas is called a 'lattice gas'. Calculations of
molecular motions are thus simplified. The outcome of binary collisions between identical particles
with discrete velocity components is determined by simple reflections about axes of symmetry in the

center-of-mass system, so calculations of collisions are sped up. It is shown that fewer than ten values
of each component of molecular velocity are necessary to produce accurate results in calculations by
direct-simulation Monte-Carlo methods of rarefied-gas flows involving moderately strong shock waves.
Thus significant savings in memory required to store the molecular velocities are realized.

2) Most cellular automata intended to describe fluid motion simulate single-speed particles moving on
* square or hexagonal lattices. In the latter case, two-dimensional low Mach number flows have been

shown by Frisch et al. to obey the Navier-Stokes equations. These authors also discuss the various
difficulties associated with the models, in particular, the restriction to low speeds. Furthermore, it is
clear that with only one a'iowed molecular speed, temperature or energy cannot be specified
independently of the velocity. d'Humidres et al. describe what appears to be the simplest multi-speed

model for flows in both two and three dimensions. The present paper described the results of an
exploratory investigation of heat conduction and shock wave formation with the two-dimensional
model. The irreversible macroscopic behavior of this microscopically reversible system is also

examined.

1. Introduction

With the design of lifting vehicles powered by air-breathing engines, which take off at sea level and

* fly at hypersonic speed in the earth's upper atmosphere, the demands on methods for numerical

simulation of flows over complex bodies have increased significantly. When conditions are such that

the governing partial differential equations change type, mapping out the flow field around the vehicle

requires that finite-difference solutions from different codes be overlaid, even in the simplest case of

*two-dimensional flow of a perfect gas. When complex chemical effects with widely differing relaxation

times become important, new computational difficulties often arise. Under such circumstances

simulation methods which are 'exact' at the molecular level become attractive, since, presumably, once

the correct treatment of the physics and chemistry has been assured at the microscopic level,

macroscopic fields will be calculated correctly even in cases for which the Navier-Stokes equations are

invalid. The major disadvantage of using molecular methods to calculate continuum flow fields is their

extreme inefficiency, due to the level of detail at which the calculations are made. Thus, molecularl-



*Q * -2-

simulation methods are most often used to calculate flows where their application is necessary, e.g., in

rarefied gas flows. Nevertheless, for the reasons stated above, and also because it often happens that

some parts of a flow field are rarefied while others are not, there has always been interest in extending

the application of molecular simulation methods well into the continuum flow regime. The objective of

the present work is to study methods for simplifying the molecular approach in order to make it more

amenable to application to continuum flows. In particular, we examine the consequences of modeling

flows with molecules that move with only a few, rather than a continuum of, different velocities. Such

discrete-velocity models have in the past stimulated many fundamental studies in kinetic theory (see, for

example Ref. 1), and recently their computer implementation as cellular automata (CA) has generated a

great deal of interest 2. The implementation in the present work of two discrete-velocity models, using

methods for concurrent computation, has provided further insight into the physics of non-equilibrium

gas flow.

In this work we are concerned with methods which directly simulate molecular motions, and in

_ particular, with the Direct Simulation Monte-Carlo method3 (DSMC), and with cellular automata. Such

methods do not solve systems of partial differential equations, so the mesh can be independent of the

coordinate system, and the calculation of flow over complex bodies is inherently simple. The present

research is an investigation of simplifications of the DSMC model and of generalizations of the CA

approach. In the former study, the emphasis is upon the influence of the simplification on the speed and

accuracy of the calculation of supersonic flow fields. In the case of cellular automata, on the other

hand, which in their present form constitute models of perhaps ultimate simplicity, our interest is in

finding the minimum generalizations necessary for the treatment of compressible flow. The models

treated in this work follow the simplifications of the Boltzmann equation introduced by Carleman4 and

Broadwell 5.6 in which the molecular velocity components are discretized. In the early work, the

molecular velocities were prescribed a priori whereas, in our treatment of the DSMC (described in

detail in the following section), the discretized velocities emerge as needed in the course of the

computation. Our work on CA is described in § 3. We investigate a lattice gas in which three

molecular speeds are allowed. This generalization of the conventional single-speed automaton2 is such

that the particles continue to move on a simple lattice but, now the concept of 'temperature' can be

introduced.

2. Integer Direct-Simulation Monte-Carlo Method (IDSMC)

In work presented during a poster session at the 15th International Symposium on Rarefied

Gasdynamics in 1986, we adapted the DSMC to massively parallel computation by writing a new code

in the C programming language* and porting it to the Intel iPSC multicomputer system. The research
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version of the parallel DSMC which we presently use treats the molecules as elastic hard spheres.

Phenomenological models of real-gas effects, such as vibrational relaxation and dissociation, which

have been developed at other laboratories, could easily be incorporated into our codes. In all of our

calculations we use an adaptive grid of cells which at every time step automatically remeshes itself in

the vertical and horizontal directions to keep the average number of particles in the rows and columns

of cells constant. By this means we aid load balancing among the processors of the computing

machine, the most important consideration for the efficient use of parallel computation.

In the conventional DSMC a relatively small sample of molecules (typically tens of thousands to

hundreds of thousands) is taken to represent a flowing gas. Space is divided into cells whose size

(Ax , Ay, Az) is small compared to the mean free path X, and time is discretized into steps At which are

smaller than the mean molecular collision time t. The calculation of molecular collisions is decoupled

from the motion of the particles, and only the molecules within a given cell are considered as

candidates for collisions. Only binary collisions are treated, so the gas is, by definition, dilute. During

0 a given time step, collisions within a cell are calculated until the (known) collision frequency has been

achieved. After collisions in all cells have been so calculated, the particles are moved in free flight to

locations appropriate for the beginning of the next time step.

The goal of the modifications to the DSMC discussed here is to limit the amount of information

about the molecular velocities that is developed, so as to speed up the calculations and free memory

space for the treatment of more particles. The most direct way to insure that the method for limiting

the information kept on velocities does not result in spurious generation or loss of momentum or energy

is to carry out the simplification in a way that insures the conservation of momentum and energy in

every collision, as in the conventional floating-point calculations. It is easy to do this for identical

particles if the components of the molecular velocities are discretized. In the IDSMC the velocity

components are integers. Though, in principle, the number of values which the integer velocity

components can assume is infinite, in practice, the number depends on the integer size provided by the

digital computer used for the numerical calculations. For 32-bit integers the number of velocities can

be as large as 4 x 109, for 16 bits 65,536 and for eight bits 256. As will be seen below, the latter

provides sufficient resolution for flows even up to hypersonic Mach numbers, so we usually declare the

velocities to be one byte long.

* The C language is the most appropriate one to use in these applications because massively parallel computation is still in the
early stages of development so that Fortran compilers generally have not been highly developed or. in some cases, are not
available.
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2.1. Discretization.

An immediate consequence of the discretization of the components of molecular velocity is that

velocity is quantized with the unit of velocity, say q. In any given problem, whether q is 'small' or

'large' depends on Lihe characteristic thermal speed of the molecules, say, the root mean squared thermal

velocity,

c, -C 2 ) = 43T-, (1)

where R is the gas constant and T is the local temperature. For high-temperature gases the velocity

distribution function is 'wide', and many molecular speeds occur, so q is small compared to c,. For

cold gases the velocity distributior _nction is 'narrow', so only a few molecular speeds occur, and q

may be of order c,. In the IDSMC the number of molecular speeds found at any point in space and

time adjusts to the temperature there. Furthermore, as in the DSMC, the number of speeds (the width

of the distribution function) does not affect the computational cost. This is not the case when the gas is
02* treated as a cellular automaton2 , where the computational cost increases rapidly with complexity.

Initially the velocity resolution is, in effect, set by the choice of the cell size, say Ax, compared to

the distance traveled by a particle of speed q in time At, which we shall call the lattice spacing S. For,

as already stated, in the DSMC At/ - m and Ax/ X 1. must both be somewhat smaller than unity.

Furthermore,

Ax Ax 1 1 c'=- - , (2)
5 qAt m qT m q

where c' = 8/3m c, is the mean thermal speed. Then for 1 = r, if 8 is small compared to Ax, q must

be small compared to c'. Thus the velocity resolution improves as the cell contains more 'lattice sites'.

In practice, Ax and At are chosen on the basis of X and T in the region of highest expected density and

temperature in the flow under consideration*. In a typical example, we take

8=0.1X, Ax=0.5X , At=0.2'r,

*so 1 = 0.5 and m = 0.2, and, from (2), c' = 2q, so

* When. as in the present work, the mesh is coarsened during the calculation in low density regions to keep 1 roughly con-

stant, the right hand side of Eq. (2) increases because i/n, not c'/q. increases. Therefore, in this case the velocity resolution
does not increase.

4
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RT = 71 q 2 . (3)2

On the other hand, if we halve 8 (to = 0.05 X) and increase At so that 1 = m = 0.5, then c' = 10q and

the temperature is 25 times higher. In any application the dimensional value of q can be chosen to

obtain the desired dimensional value of the reference temperature T, e.g., 300K.

A further consequence of the discretization of the velocity components is that, if particles are

initially distributed in space on a regular array co-incident with the axes of the co-ordinate system at

points with spacing 5, then the particles remain on the array for all time, and we have a 'lattice gas'.

By initially positioning the particles on a lattice, the spatial resolution is coarsened to a level consistent

with the velocity resolution, and the calculation of particle motion is simplified and sped up; particle

translations during the motion phase are obtained simply by counting lattice sites. Since the particle

locations are integer numbers, storage requirements are also reduced.

* In the IDSMC a (coarse) mesh of cells is superimposed on the (fine) lattice, and particles are drawn

as candidates for collisions from all of the lattice sites within a cell. There may be as few as one lattice

site in a cell, provided there are enough particles at the site that a sufficient number of collisions can be

calculated during a time step to provide the necessary collision rate. This is in contrast to the procedure

followed when the lattice gas is treated as a CA, in which case the number of particles at a site is

limited by an exclusion principle, and every particle is treated as a candidate for a collision, consistent

with a set of specified collision rules. For the CA the collision rate is an outcome of the calculation. In

the IDSMC, as in the DSMC, a record is kept of the cell in which every particle resides, at the expense j
if additional storage. Since the adaptive grid of cells is superimposed on the fixed lattice, the cell sizes

may not have any simple relationship to the lattice spacing, and two cells of the same size may contain

a different number of lattice points. Thus it is necessary to take the cell volume to be proportional to

the number of lattice sites in the cell in order that the time increment for each collision be properly

computed. If there are many lattice sites per cell, the discretization of space is no longer significant.

Thus, there is a continuum of IDSMC models of variable resolution.

2.2. Collisions.

To date we have considered only the interaction of identical hard-sphere molecules, and the

following description of the method is limited to that case. As in the conventional DSMC, particle

pairs are chosen for collision from among all the particles in a cell with a probability proportional to

*their relative velocity. The mechanics of collisions of integer-velocity molecules can be understood by

the following considerations. For simplicity wc present examples for a two-dimensional gas. The

generalization to a three-dimensional gas is straightforward, and, except where otherwise noted, all of

the calculations we present were performed with a three-dimensional gas. Figure 2.1 shows a simple

01
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quantitative example of a collision in which one of the colliding particles initially has velocity (ui, vi) =

(4q, q) and the other (uj, vj) = (2q, 5q). The relative velocity is the vector difference between these

two velocities, and the center-of-mass velocity lies at the center of the relative velocity vector. The

consequence of momentum and energy conservation is that after the collision the relative velocity

vector has the same magnitude and is simply rotated by the collision angle X about the center-of-mass

velocity. Candidates for outcome discrete velocities in the example of Figure 2.1 are indicated by small

open circles on the perimeter of the large circle. It is clear that if one colliding particle is fast and the

other is slow, as might occur in a high-temperature gas, the relative velocity will be large, so the

diameter of the circle defined by the relative velocity vector will be large, and there will be many

possible outcome velocities. Thus, in this method new integer velocities are generated or canceled

automatically, as required by the local temperature and collision dynamics.

In general, four different cases must be considered depending on the parity of the components of the

relative velocity vector. In Figure 2.1 both components are even (EE, e.g., (2q, 4 q), with a squared

relative velocity of 20q 2). In this case the center-of-mass velocity falls on a lattice point in velocity

space, and, in general, given a pair of initial velocities as shown, there are four possible pairs of output

velocities (including that in which the initial velocity vectors are simply interchanged with no apparent

change on the figure). The possible outcomes of the collisions are the intersections of the lattice in

velocity space with the circle centered at the center-of-mass velocity of diameter equal to the relative

velocity. It can be seen that the three pairs that are different from the input pair can be constructed by

sequential reflections about the vertical, the 450 and the horizontal axes. We designate the slope of

these three axes by 1/0, 1/1 and 0/1, respectively. If both components of the relative velocity are odd

(00, Figure 2.2), the center of mass falls at the center of a unit cell of the lattice in velocity space, and,

again, four outcome pairs obtained by the same reflections as above are possible. On the other hand,

when the relative-velocity components are of opposite parity (EO, Figure 2.3), the center of mass falls

on the edge of a unit cell in velocity space, so no reflection about the 1/1 axis occurs, and only two

outcome pairs are possible. In the EE and 00 cases the relative velocity vector can lie at 450 (see

Figure 2.4). In this case there are only two outcome pairs possible. On the other hand, in the EE and

EO configurations the relative velocity vector can be vertical or horizontal (Figure 2.5). With EE there

* are only two outcome pairs, while with EO there is only one possible outcome, the same as the input.

At higher relative velocities, i.e., at higher temperatures, reflections about other axes can be made,

so more possibilities for outcomes arise. For example, the circle defined by a relative energy e, of

130q 2 intersects components (7q, 9q) and (3q, llq), which cannot be obtained from each other by

reflections about 1/0, 1/1/ or 0/1 (see Figure 2.6), so there are 8 possible outcome pairs for either of

these 00 input configurations. These outcomes can be constructed by reflection about axes of slope 1/2

and 2/1. In general, as the length of the relative velocity vector increases, symmetries about lines of

4
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slopes given by ratios of increasing values of whole numbers (e.g., 1/3, 2/3, etc.) arise. In Figure 2.7

we indicate on the relative velocity lattice the number of points in the quadrant that are intersected by

the circle about the origin which passes through that point. The boxed-in points are those that

participate in symmetries more complex than 0/1, 1/0 and 1/1. If the relative velocity falls on an axis of

* symmetry, the possible outcomes are correspondingly reduced, and the case is degenerate. The

*L algorithm for finding all the possible outcomes for a given relative velocity is relatively complex, so it

is more efficient to do the calculation once and store the results in a look-up table for use during the

Monte-Carlo calculations.

As the above discussion suggests, the number of possible collisions increases rapidly as the velocity

resolution increases. In three dimensions there are 23 = 8 parity cases, each possessing slightly different

symmetry possibilities and degeneracies. Figure 2.8 is a plot of the number of integer points intersected

by the spheres with squared radius from 1 to 50. Table I gives the first few entries of the look-up table

used for the collisions.

Table 1. Sample from Look-up Table in Three Dimensions

Radius2  Number of Points Coordinates of Points on Sphere
on Sphere

0 1 (0,0,0)

1 6 (-1,0,0) (0,-1,0) (0,0,-1) (0,0,1) (0,1,0) (1,0,0)

2 12 (-1,-1,0) (-1,0,-1) (-1,0,1) (-1,1,0) (0,-1,-1)
(0,-l,l1) (0,l1,-l) (0,1,1) (1,-l,O)

(1,0,-1) (1,0,1) (1,1,0)

3-(-1,-1,-1) (-1,-1,1) (-1,1,-I) (-1,1,1) (1,-1,-1)
(1,-1,1) (1,1,-1) (1,1,1)

4 6 (-2,0,0) (0,-2,0) (0,0,-2) (0,0,2) (0,2,0) (2,0,0)

5 24 (-2,-1,0) (-2,0,-1) (-2,0,1) (-2,1,0) (-1,-2,0)
4 (-1,0,-2) (-1,0,2) (-1,2,0) (0,-2,-1) (0,-2,1)

(0,-1,-2) (0,-1,2) (0,1,-2) (0,1,2) (0,2,-1)
(0,2,1) (1,-2,0) (1,0,-2) (1,0,2) (1,2,0)
(2,-1,0) (2,0,-1) (2,0,1) (2,1,0)

6 24 (-2,-1,-1) (-2,-1,1) (-2,1,-1) (-2,1,1) (-1,-2,-1)
(-1,-2,1) (--1,2,-2) (--1,21) (-1,1,-2)
(-1,1,2) (1,2,-) (-1,2,1) (1,-2,-1)

(1,1,2) (1,2,-1) (1,2,1) (2,-1,-1)

(2,-1,1) (2,1,-1) (2,1,1)

4 8 12 (-2,-2,0) (-2,0,-2) (-2,0,2) (-2,2,0) (0,-2,-2)
(0,-2,2) (0,2,-2) (0,2,2) (2,-2,0)
(2,0,-2) (2,0,2) (2,2,0)

I
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This table contains the co-ordinates of the integer points on spheres centered at (x, y, z) = (0, 0, 0) with

differen, values of squared radius. Before using the table the velocities of the collision partners are

L transformed into the relative velocity frame. After choosing with uniform probability the outcome point

from the table, under the condition that the parity of the components of the pre- and post-collision

relative velocity vectors be the same, the final velocities are retransformed into the lab frame. Note that

some spheres (e.g., squared radius = 7) are not intersected at all by the lattice. The complete table

presently used has entries for 1143 spheres. A look-up table containing entries for spheres with

diameters up to, say, 40q can be several kilobytes in size. Since memory requirements of this

magnitude are a matter of concern on many present-day parallel-computing machines in which the

processors do not share memory, we choose to store the entries for only the octant (x, y, z) > 0 of each

sphere, and reflect the selected outcome configuration of each collision across the planes x = 0, y = 0

and z = 0, each with 50% probability. This reduces the size of the look-up table to 1/8 of that needed

for the full sphere, at the expense of a small increase in computational time.

S It is clear from Figure 2.8 that, for collisions with moderately large relative velocities (typical of

moderate temperatures), effectively a continuum of dynamical interactions is possible. On the other

hand, for relatively low temperatures, where only a few velocities are used, the possible outcomes are

limited, and it is easy to see that the resulting discrete distribution of, say, collision angle might be quite

idifferent from the expected uniform distribution of a continuous-velocity gas. Figure 2.9 is a histogram

of the deflection angle of the relative velocity vector in an equilibrium three-dimensional IDSMC gas at

two different temperatures. The figure was constructed by allowing 32,000 particles in a box to collide

64,000 times. The box contained just one computational cell, and the calculations were performed on a

small sequential computer. The solid continuous line is a sine distribution appropriate for a hard-sphere

gas. It can be seen that at the lower temperatures the angles 0, ir/2, etc., occur very often, and that the

resulting distribution does not resemble that of a continuous-velocity gas, while at high temperatures the

continuous distribution is well modeled. To a certain extent, the frequent occurrence of certain discrete

collision angles compensates for the absence of neighboring values. However, in the integer-velocity

gas there seem to be more occurrences of zero deflection angle than would account for the lack of small

non-zero deflections. As will be seen below, at low temperatures (i.e., low velocity resolution) the

'4- excess of zero-angle collisions has the effect of artificially increasing the diffusivity of the gas, while at

moderate temperatures the effect on macroscopic quantities is not noticeable. The sampled distribution

of particle velocity components at two different temperatures in an equilibrium gas shows no such

anomalies, and agrees extremely well with the Maxwellian velocity distribution function (Figure 2.10).

6• Even with the low-temperature case of Figure 2.10a, the nine available discrete-velocity components

reproduce the Maxwellian distribution with excellent accuracy. We find, however, that the equilibrium

distribution is not as sensitive a measure of the correctness of the collision process as the distribution

function in a highly non-equilibrium flow.

0 mm m mmm m lm m I N m i
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It is worth noting that in cold regions of a flow the integer-velocity method imposes a minimum

relative velocity between two low-energy particles. Thus, the amount that the time counter of the cell

in which such a collision occurs can be incremented in cold regions is limited, while in a continuous-

velocity gas very large time increments, effectively shutting down the cell for long periods, can occur.

Note, also, that in cases for which there is only one site per cell there is no violation of the conservation

of angular momentum if the lattice spacing is taken too large (see discussions by Meiburg7 and Bird8).

2.3. Boundary conditions.

In the IDSMC, the boundaries, which in the calculations presented here are parallel to the lattice

axes, are taken to lie midway between lattice points. Specular wall collisions are treated in the same

way as in the conventional DSMC, by reflecting the particle trajectory across all wall segments

necessary to insure that the particle at the end of the time step is inside the flow field, and by reversing

its normal velocity after each reflection. For diffuse wall collisions the velocity components of the

emitted particles are chosen from the integer Maxwellian distribution (cf. Fig. 10) corresponding to the

wall temperature. The trajectories of colliding particles approaching and departing from walls are

calculated with floating-point precision, and at the end of the time step the particle position is rounded

to the nearest lattice site.

2.4. Results - IDSMC.

In this section we present the results of calculations of two test problems which exhibit certain

features of the IDSMC method.

2.4.1. Relaxation to Equilibrium. In this calculation, 16,000 particles in a box consisting of one

computational cell are initially distributed bimodally with integer-valued velocity components, as

indicated in the top rows of Figures 2.11 and 2.12. The x-component molecular velocities are

distributed in two narrow bands (each with RT = 1.5q 2) about u = ±Oq, while the y- and z-component

velocities have only one peak of the same width. The fluid is uniform in these calculations, and all

particles in the box are candidates for collisions. Only the collisions are calculated; the particle motions

are not. Figure 2.11 shows the results for the conventional DSMC method, while Figure 2.12 gives the

* results for the IDSMC at the same times. Though in the DSMC calculation the initial distribution

contains only integer-valued components, after the first collision the velocities become decimal

numbers. In Figure 2.11 the distributions are plotted as histograms with bin size q, while in Figure

2.12 the plotted spikes represent the accumulated data at the corresponding discrete values of velocity.

0 The molecular velocities are sampled after I (second row), 2 (third row), and 10 collisions per particle

(fourth row), respectively. It can be seen that in both calculations the initial bimodal distribution

evolves into Maxwellian distributions with temperature RT = 35.02 q 2 in all three directions (indicated

by the solid curves in the bottom row), and that the IDSMC is essentially the same as the DSMC result.
So
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Using the Bhatanagar-Gross-Krook model of a discrete-velocity gas, Broadwell9 showed that the

equilibrium distribution has the form of a Maxwellian, i.e., for a two-dimensional stationary gas,

niexp[a [u2 + vi2] (4)

where the subscript Oi refers to the class of particles with discrete velocity components ui and vi. In

the limit in which all velocities are allowed, A becomes (2RT) - l. Thus the distributions shown in the

bottom row of Figure 2.12 are expected. The present calculations show that in addition the discrete and

continuous distributions are very similar in non-equilibrium flows.

U 2.4.2. The normal shock wave. One way to rigorously test the new discrete-velocity method is to

compare results for the structure of strong shock waves with DSMC calculations carried out on the

same machine using comparable code with the same time step size, cell size, etc.. Figure 2.13 shows

the normalized density and temperature profiles obtained by the DSMC (solid line) and the IDSMC

(points) for a normal shock wave of strength M, = 6.11 in a perfect hard-sphere gas. The space co-

ordinate is normalized with the upstream mean free path. Also shown are discrete Maxwellian

distributions of molecular thermal velocities corresponding to the measured uniform states upstream and

downstream of the shock together with the continuous Maxwellian, for comparison. The calculation is

carried out in a nonsteady frame; the left wall of a box is impulsively accelerated to a constant speed of

8q at time t = 0, and the shock profile is sampled after 180 time steps of size At = 0.1085 1 1, where T1,

is the upstream mean free time. The cell size is about Ax = 0.5 X. There are about 60 particles in each

cell and 20 lattice sites per mean free path. In order to achieve a smooth profile using this approach, a

total of about 140 million collisions between 6.1 million particles are calculated, using 64 processors of

an Intel iPSC message-passing multicomputer. Physical space is assigned to the computer nodes in

accordance with the load-balancing algorithm already described. When, during the move phase of the

* calculation, a particle moves from one node's domain to that of another, it is sent there as a message. It

can be seen that excellent agreement with the continuous-velocity DSMC model is achieved starting

with only 7 values of each velocity component. In the uniform gas behind the shock 29 values of each

component are found.

Figure 2.14 shows results from a similar problem, but with the upstream temperature in the IDSMC

calculation 4 times smaller than in Figure 2.13. In this case the velocity resolution is poor, so the

discrete calculation does not agree as well with the continuous-velocity result. As discussed above,

* with just a few possible velocities, zero deflection angle occurs too often in the discrete calculations, so

the particle diffusivity is too large. Thus, the hot downstream particles diffuse toward the front of the

shock, and the shock becomes too thick.

S l iu llm lmnaaram r l'r -
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A sensitive test of the absolute accuracy of shock structure calculations is obtained by plotting the

normal component of the pressure tensor, p, = pu' 2, versus the specific volume. According to the x-

momentum equation, this should be a straight Rayleigh line. In Figure 2.15 p,,, normalized by its

upstream value, which by definition is the upstream pressure, is plotted versus Pl/p for the same shock

calculations as presented in Figure 2.13. The cluster of points at (1, 1) are from samples near the

upstream end of the shock and the cluster near (46.4, 0.27) are from the downstream end. In the

calculations reported here the cell size and time step were selected to achieve the performance indicated

in the figure; larger values would have resulted in an S-shaped curve which deviated more from the

straight Rayleigh line. The figure shows that, with the same time step and cell size, the IDSMC and the

DSMC perform about the same.

2.5. Summary and Discussion, - IDSMC.

It has been shown that, for rarefied gasdynamics problems in which there are fairly strong shock

waves, accurate results in calculations by direct-simulation Monte-Carlo methods can be obtained when

the upstream distributions of each component of molecular velocity contain fewer than ten discrete

values. When the molecular velocity components have integer values, the particles move on a lattice,

so calculations of their motions are simplified. The outcome of binary collisions between identical

particles with discrete velocity components is determined by simple reflections about axes of symmetry

in the center-of-mass system, and the results can be stored in look-up tables for rapid use during

calculations of collisions.

Calculations of relaxation to equilibrium and of shock wave structure have been performed to test

the accuracy of the discrete-velocity method. Comparison has been made with known equilibrium

results, and, for nonequilibrium, with calculations under identical conditions by the conventional

DSMC. A test of absolute accuracy by plotting the Rayleigh line in normal shocks has been introduced.

From these tests the velocity resolution cited above, necessary for achieving high accuracy, wasI
deduced.

In the multicomputer used for the present calculations, provision for 256 different values of velocity,

by declaring the molecular velocity components to be one byte long, allows 2.4 times more particles to

be treated in a two-dimensional flow than when the particle velocities qre stored as real numbers. With

real numbers the storage per particle is 22 bytes (12 for the 3 components of velocity, 8 for 2 positions,

and 2 for the particle index), while with the present method it is 9 bytes (3, 4 and 2). Thus flows with

Reynolds numbers 2.4x greater can be calculated. Clearly, since many fewer than 256 velocity values

are necessary, this result could be improved if the velocities were stored more compactly. For example,

if only 5 bits were used for velocities and 10 bits for positions, the improvement could, in principle, be

3.5x.

I
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By design, the IDSMC computes primarily with integer arithmetic and the DSMC with floating-

point arithmetic. Therefore, comparison of the relative speed of the two methods is bound to be

machine dependent. For example, in the calculation of relaxation to equilibrium reported above, in

which only collisions in one large cell are calculated, and the particles are not moved, the IDSMC ran

about 3x faster on a sequential SUN 3/60 microcomputer, which is apparently relatively efficient at

integer calculations, than did the DSMC. On the other hand, in the strong shock wave problem on the

Intel iPSC multicomputer, which is evidently a rather efficient floating-point machine, the IDSMC ran

only about 10% faster. In view of the fact that our codes have not yet been optimized for speed, it is

clear that more work needs to be done to define definitive benchmarks.

3. Study of a Multi-Speed Cellular Automaton

3.1. Cellular Automata.

The macroscopic behavior of a fluid near equilibrium is expected to be nearly independent of the

details of the motion of the molecules which constitute it. For example, low Mach number flow of a

gas and of a liquid are described by the same equations. This idea forms the basis for the cellular

automaton (CA) simulation of fluids2. The aim of this approach is to maximally simplify the molecular

dynamics while retaining the essential physics. This simplification of the molecular dynamics involves

a full discretization of phase space i.e., of both velocities and positions. This is in contrast with the

discrete-velocity models .4 .5 ,6, where only the velocity space is discretized, and the various finite

difference equations where only position space is discretized. Discretization of both velocity and

position gives rise to the notion of discrete time, the unit of time being that taken by the slowest

moving particle to travel the smallest unit of distance in the direction of its velocity. All other particles

move an integer number of link lengths in the direction of their velocities in the same time. The

evolution of the system is then reduced to a set of discrete move and collide phases. At each instant of

* time, each lattice site collects the relevant information from its nearest neighbors (i.e., the particles

convect) and performs a simple transformation on it (i.e., the particles collide). Such a limiting

simplification is a cellular automaton and is implemented by mapping onto a digital computer.

O To study the simplest of these models, only a few velocities are considered. Particles are then

identified by their velocities, so that we have a small number of distinguishable particle types. For no

reason other than to keep computation per time step small, an exclusion principle is adopted, namely,

no lattice site is allowed to have more than one particle of a particular type. In the present work the

*O rules for collisions conserve mass, momentum and energy. The choice of candidates for collision is

arbitrary and thus the collision rate of CA, and therefore the mean free path, is model dependent. This

is in contrast to the procedure used in Monte-Carlo methods used for directly simulating molecular

flows 3, in which candidates are chosen to insure that the collision rate is correct.'O
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3.1.1. Implementation. The implementation of cellular automata on a digital computer is simple,

elegant and highly efficient. In the present work a lattice site is represented by a computer word. The

computational domain is then an array of words. A particle of a particular type (i.e., a particle with a

certain velocity) is identified with a particular bit in the word. A word therefore has to have at least as

many bits as there are velocities in the model. The presence or absence of a type of particle at a lattice

site is indicated by the presence or absence (on or off) of the corresponding bit in the word representing

the lattice site. When only a few velocities are present in the model, the move phase is accomplished

by a small number of simple binary operations on the array of words representing the computational

domain, while the collide phase is reduced to a table look-up. With more velocities, the move phase

requires more binary operations, and the look-up table becomes bulky, necessitating a functional

implementation of the collisions. In a variant of the above implementation, the presence or absence of a

particle of a particular type at a group of lattice sites is compacted into a word. A set of words, as

many as the number of different velocities, then represent several lattice sites, as many as the size of the

word. In this scheme, the move phase amounts to shifting words bitwise in the appropriate direction

and the collision phase to the evaluation of Boolean functions representing the collisions.

In either case, the simplicity of the move and collide steps makes it possible to simulate huge

numbers of particles, in comparison to other direct simulation methods. Further, since only nearest

neighbors interact, the evolution itself is highly localized and hence is ideally suited for concurrent

computation. The communication overhead between the nodes of a parallel processor is proportional to

the ratio ef the perimeter of the physical space represented by a node to its area, i.e., to the inverse of

* the aspect ratio of the computational domain. The complete synchrony between the various parts of the

computational domain obviate the need for balancing load between the various processors dynamically.

The present study has concentrated on the simulation of two-dimensional fluids because most

essential ideas can be described with them. An extension to three dimensions is straightforward.
I

3.2. Single- and Multiple-Speed Models.

In the classical CA, known as the HPP model t °, and in most subsequent models, the particles move

with a single speed. Figure 3.1 shows the lattice corresponding to the HPP model, in which the
particles can move in 4 different directions. The particles move along the horizontal or vertical links to

cover one link length in one unit of time. The only non-trivial collisions are the horizontal and vertical

head-on collisions. Then, if all particles are initially on the lattice, they remain so. Figure 3.2 shows a

second single-speed model with a better symmetry, the FHP model2. Particles now have one of 6I
different velocities, all of the same speed. There are now a number of non-trivial collisions but

spurious conservations by 2-body collisions alone necessitate the implementation of three body

collisions as well. It has been shown by Frisch et al.2 '1 two dimensions and d'Humieres et al.t2 for

4
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three dimensions that for the single-speed model on the hexagonal lattice of Figure 3.2 the fluid

mechanical velocities, obtained by averaging over many sites, satisfy the incompressible Navier-Stokes

equations. (On the square lattice (Figure 3.1), the cross-derivative convective terms in the averaged

momentum equation are missing, leading to a spurious conservation of momentum2.) The problem,

however, with single-speed models is that the temperature cannot be represented independently of the

velocity. In a two-speed model, even though differing proportions of the particles with the two

allowable speeds can represent differing amounts of energy, there is no mechanism by which, in

collisions conserving momentum and energy, particles can change speed. This implies that there is no

dynamic balancing between the particles of uiffering speeds or that equilibration is only partial. Thus

the simplest model with temperature as an independent degree of freedom is a three-speed model.

Preliminary investigation of one such model, a 3-speed, 9-velocity model is presented here.

A major shortcoming of these lattice gases in modeling real fluids is that the state variables of such

a gas depend on the frame of reference, so they are not Galilean invariant. Addition of more velocities

0 will of course mitigate this problem. Even with just a few velocities, however, at very low speeds

compared to the particle speeds (i.e., in the low Mach number), the effect of Galilean non-invariance is

negligibly small.

3.2.1. The 9-Velocity Model. Figure 3.3 shows the allowable velocities in the three-speed model, and

Figure 3.4 the two dimensional lattice on which the particles move. The slow particles, which have unit

speed, say q, are restricted to move on the horizontal and vertical links, while the fast particles, which

have a speed of 42 q, move on the diagonal links. The zero speed particles exist only to take part in

collisions, to allow interaction between the other two speeds. Each lattice site has 8 nearest neighbors,

4 at a distance 8 away and 4 others a distance N7 5 away where 8 is the distance traveled at speed q in

unit time, At. To model a dilute gas with short-range intermolecular interactions, collision rules are

defined in which only the nearest neighbors influence a lattice site. Then all possible collisions, each

O conserving mass, momentum and energy, of the types shown in Figure 3.5, take place, subject to the

exclusion condition. Since only one particle of a given velocity is allowable at a site, the site may not

be able to accommodate some of the particles resulting from some collisions and hence those collisions

are excluded.

As stated above, the transport coefficients of a lattice gas depend on the details of the microscopic

dynamics. To examine this behavior the experimental simulations have been carried out with two

different set of rules (collisions). In the first (rule set 1), only binary collisions are implemented i.e., a

* collision occurs at a site if and only if there are exactly two particles at that site and if at least one

component of their momenta are oppositely directed. This set of rules therefore implements just 10

direct collisions and their inverses, so a total of 20 states of the 29 = 512 possible at any lattice site are

changeable. In the second (rule set 2), a collision occurs at a site, irrespective of the number of

.A
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particles present there, providing only one collision is possible. Thus in come of these collisions two

particles collide while others at the same site are not affected. The same two-body collisions are

implemented in this rule set as in rule set 1, but this rule set transforms a total of 156 of the possible

512 states at a lattice site to a different configuration. Thus the collision rate is substantially increased.

Other rules are possible, including that implementing all possible conservative collisions at a site in a

certain specific order, or randomly, but the two rule sets described above are sufficient for our

arguments.

3.2.2. The Boltzmann equations. An approximate description of the evolution of spatial averages of

the nine populations in the automaton is given by Boltzmann equations for the corresponding discrete

velocity gas. They are formulated by assuming that (1) the gas is dilute, so that only binary collisions

are important, (2) there is no exclusion, and (3) molecular chaos prevails, i.e., that the joint two-particle

distribution function can be replaced by the product of two one-particle distribution functions. The

Boltzmann equations for the 9-velocity model are given schematically in Table 1.

Table 1

Boltzmann Equations

71 9 Velocity Model

c, 2q 2'd7q .
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The gain and loss terms which appear on the right-hand sides of the equations for the 10 different

collisions are indicated in the second row, while the relative velocity c, for each of the collisions is

indicated in the first row. The collision rate for each collision is proportional to c,. The left hand side

of each of the nine equations for the nine classes of particles are indicated in the first column. The

entries in the matrix give the sign with which the gain/loss terms appear in the corresponding equation.

3.3. Observations and Discussion.

3.3.1. The equilibrium state. A first step towards understanding the nature of the lattice gas is to study

its equilibrium. If there are no spatial gradients, these equations have solutions that approach a steady

equilibrium state. This behavior is conveniently described by defining the H function

i H = Ini logni , (1)

and showing that it must decline to a constant. According to the H Theorem, at thermodynamic

. equilibrium detailed balancing prevails, so the gain/loss combination from each collision goes to zero

individually. These are the equilibrium equations for the model. They make up the following set of 5

independent equations.

n113 = n
0/ 2

fn3n5 = non6

n sn- = non6  (2)

n7f1  = /10/1

n 3 n 7 = n1 n 5

Customarily, equilibrium conditions are expressed in terms of thermodynamic variables of state, in this

case the density n, the energy of the system et and the mean velocities ii and V'. Then, the definitions

of these variables provide four other equations to be satisfied,

n =no+nl+n2+n3+n4+ns+n6+n7+ng

1  + n2 + n - n 4 - 5 - 1 6) (3)

n

12 + n 3 + - 4 -nr - n7 - n1

n

e= q  n +n 3 +ns+n 7 +2 1n2 + n 4 +n 6 +ns
2n L

Thus there are nine equations for the nine variables ni, and the system is uniquely determined.
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The equilibrium equations are solved for some simple cases in Appendix I. Figure 3.6 shows the

* evolution of the H function for lattice-gas particles in a box initially distributed randomly with the state

variables set to the desired final state. It is seen that, though the initial condition is in the proper

macroscopic state, the system is initially out of equilibrium, but equilibrates in a few collisions.

* Experimental simulations of the equilibrium conditions are in accord with the solution of the above set

of equations, as shown, for example in Figure 3.7.

3.3.2. Characterization of the Mean Free Path. The mean free path is of the order of the lattice spacing

in the range of densities of interest. Above a certain density, the effects of exclusion come in strongly

and the mean free path between effective collisions becomes very large. The mean free path is

calculated in the following way. The initial condition in a box with doubly periodic boundary condition

is set to correspond to prescribed values of density, temperature and velocity The boundary conditions

were made doubly periodic because otherwise, shocks and rarefactions, in the cases of non-zero

macroscopic velocity, dissipate directed kinetic energy and change the thermodynamic state of the

. system. The initial particle distributions are calculated numerically under the simplifying assumptions

of binary collisions and absence of exclusion. In the simulation, exclusion may cause the actual particle

distribution to be slightly different from that calculated initially. After the system is allowed to relax to

equilibrium, the number of collisions in the box is counted for a number of time steps. Also kept track

of is the ratio of particle population of different speeds. Then under the assumption of ergodicity of the

behavior of particles, the typical collision frequency v, and the mean particle speed F are calculated and

the mean free path obtained from the relation X = F/v.

The variation of the mean free path with density, temperature and velocity for the two different rule

sets was studied. As can be seen in Figure 3.8 and 9, the behavior of the mean free path with the two

rule sets differs appreciably only in the regions of high density. Recall that the two rule sets implement

the same collisions. The only difference between them is in the number of collisions which are

S.. _effective.

A power regression between the mean free path and the density at low densities gives X - I/p as in

real gases (see Figures 3.8 and 3.9). The anomalous behavior at higher densities comes from the

exclusion of some collisions. This study gives bounds on the density that can be used in these cellular

automatons to study gas dynamics. The variation of the mean free path with temperature comes from

the collision rules and probably cannot be given physical significance. Figure 3.10 illustrates the

Galilean non-invariance of the model, i.e., the mean free path changes with velocity. Note, however,

* that changes are small up to velocities of about 0.3q.

0
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3.3.3. Heat Conduction. To examine the nature of the model and, in particular, its ability to deal with

heat conduction, we have studied heat transfer between two walls at rest (Figure 3.11). The walls are

maintained at different temperatures and the temperature distribution in the gas is computed as a

function of time. Temperatures are maintained by imposing, at each instant of time at the row of wall

* lattice sites, the equilibrium particle distribution corresponding to the wall conditions. The parameter of

interest in the problem is the Knudsen number, Kn = JL, where L is the wall separation. The main

aim is to determine the nature of the steady state profiles and the effect of a variation of Kn on these

profiles. Both rule sets were used for some runs. The k: cold wall was maintained at temperature of

0.6q 2 /k and the right at 0.7q2 /k. The prescribed dens.ty was 0.3 particles per site. From uniform

initial conditions the system was allowed to relax to a steady state, after which the temperature profile

was computed by averaging over about 1600 stations along the wall and 2048 time steps. Computations

were made for three Knudsen numbers, 0.44, 0.22, and 0.10; the profiles, for rule set 1, are shown in

Figure 12. As in the case for real gases, the profiles are linear with temperature jumps at the walls.

Further, as expected, the magnitude of the jumps decline with Kn, approaching zero in the continuum

limit. Figure 3.13 shows the temperature profiles for the first two cases computed with rule set 2. The

results for the two rule sets are seen to be similar.

It should be noted that in the free molecule flow limit, Kn - 0, the model does not work. In the

absence of collisions, the zero speed particles populations cannot adjust properly to those emitted from

the walls to yield the correct mean temperature. This appears to be an inherent flaw in the model at this

condition.

The time to reach steady state increases roughly as the square of the wall spacing, a result which

suggests a similarly parameter of the form y/4i- where y is the distance normal to the walls and v an

appropriate diffusion coefficient. In summary, similarities between the automaton results and those in

real gases include:

1. linearity of the steady state profile

2. increasing temperature jump at the wall with increasing Knudsen number

3. existence of a similarity parameter of the form y / "

3.3.4. The Normal Shock Wave. Another classic test of molecular models is the normal shock wave.

The particle population ratios in a box (Figure 3.14) are set to correspond to a certain temperature,

density, and momentum in one direction, the momentum in the other direction being zero. The particles

are allowed to relax to equilibrium by making the box doubly periodic. After that, at time zero, theS

boundaries perpendicular to the direction of mass motion are made specularly reflective (the other walls

may be either periodic or specular). Subsequently, a shock forms at one end and propagates away from

the wall at a speed that depends on the initial Mach number. At the other, a rarefaction wave forms.
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By varying the initial temperature and velocity, shocks of different strengths can be generated and their

characteristics computed.

Temperature and density profiles for several Mach numbers computed with the two rule sets are

given in Figures 3.15 through 3.18. Here, in the stronger shocks, where the flow is further from

equilibrium, results for the two rule sets may be expected to differ considerably. Again, as in the

preceding example, the qualitative behavior is similar to that in real gases. In particular, (1) the density

ratio increases and the thickness declines with initial Mach number, and (2) the temperature rise

precedes the density rise.

Quantitative comparisons with the behavior of an ideal gas with a specific heat ratio of two, the

proper value for a two-dimensional gas, have not yet been done because of several uncertainties. First

the thermodynamic properties of the lattice gas, i.e.,, the specific heats, are difficult to work out. Next

the Galilean-non-invariance of the model precludes a comparison of the jump conditions in the present

unsteady flow to those of the steady shock. Finally, there is a degree of arbitrariness in the definition of

.* the mean free path. In the case of molecules having a continuum of velocities, all collisions resulting in
a deflection of more than a certain threshold are counted in calculating the mean free path, but in the

present model, a particle is deflected, if at all, by either 45 degrees or 90 degrees. So, while counting

only the non-zero deflection collisions gives a larger than correct mean free path, counting all collisions

i.e., even those collisions which leave the particle velocities unchanged, errs in the other direction.

3.3.5. The Arrow of Time. It is interesting to note that since each operation on the automaton is

reversible, so are the macroscopic processes it models. More precisely, this is true when there is no

external forcing, as in the shock and expansions wave flows discussed above*. Therefore, if at any time

during the unsteady wave computation all molecular velocities are reversed, the system returns to its

initial state. How is this behavior in accord with the second law of thermodynamics? This section

describes a brief investigation of this question.

The one-dimensional flow computed in §3.4 was repeated for a shorter box and longer lengths of

*time, so that with reasonable computer time the approach to a stationary mean state could be examined.

Figure 3.19, between times t = 0 and t = 600, shows the decay of the mean velocity in the box as a

-- function of time. Between the same times Figure 3.20 shows the increase in entropy of the system as a

whole as the gas comes to rest. If, as already noted, at any time, say t = 600, all molecular velocities

. In the heat conduction example, since the temperature at the walls is imposed at each instant of time, the procedure of rever-
* sal is less clear.
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are reversed, the system reverses and exactly retraces the forward path as indicated in Figures 3.19 and

3.20 between t = 600 and t = 1200.

To see, nevertheless that the system has a preferred direction in time, we consider the effect of a

small "error" on the system over-all mean velocity when it moves forward and backward in time. First,

at t = 600, molecules at 0.1 percent of the sites in the box are reversed. The subsequent history is

virtually the same as the original, and there are only microscopic differences. However, when the same

error is then introduced at t = 600 as the system runs backward in time, i.e., 99.9% of the particles are

reversed instead of 100%, the effects are drastically different, as is illustrated in Figures 3.21 and 3.22.

There is no resemblance to the macroscopic history of the system running backward with no error.

This behavior, and presumably that of real systems also microscopically reversible, may be

summarized by saying that the solution describing the state history is stable in the forward direction but

highly unstable in the reverse. A different way of looking at this behavior is that the CA evolution is

an iterated Boolean map possessing a macroscopic equilibrium state. From yet another point of view,

the automaton is a nonlinear system whose mean state is extremely sensitive to initial conditions in one

direction in time but not in the other.

This short and incomplete study suggests that the cellular automaton could be a new tool for

examining the irreversible behavior of reversible systems and the further resolution of the Loschmidt

and Zermelo paradoxes. There is, of course, an enormous literature on these subjects but it has not yet

been examined for relationships to the present work. A recent review by Coveney13 describes many

current ideas.

3.4. Conclusion - CA.

This work should be considered to be an exploration of the usefulness of cellular automata in the

study of gas dynamics. It is premature to discuss the accuracy of the model (as the identification of

several important difficulties makes clear) or of relative computation speeds. The primary usefulness of

the model may, in fact, turn out to be as a mechanism for investigating concepts.

i* 4. Appendix I - The Equilibrium State

The equilibrium equations have been solved in a few simple cases. In particular, for u = v = 0,

S~no=n [1k- 2
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The solutions for small velocity in one of the directions x or y are obtained by a linearization about the

above stationary states. For small u, and v = 0, let e, a kT + u2/2, kT = e,
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Experimental simulations tend to show the behavior as expected from the above analysis. Shown in

-, Figure 4.7 is the stagnant particle density in a box of gas at kT = 0.50 and u = v = 0. Note the

equilibration with time. The initial state was obtained by a random placement of particles in amounts

giving the above values of kT, u and v.

5. Appendix II - Sound Propagation

The equations describing propagation of weak disturbances can be found by linearizing the

Boltzmann equations for the model. The result is a set of first order linear partial differential equations

which can be combined into a single equation for any variable, 0 (a population density, for instance).

The equation is

2 a2 a +4 a4 4 ./
2 + t f~ -t -q 2 2 + 4qat2a2 +q XZOx +4]3't -~ f 2* 0

a4 a4 a a2 2 4 22  (M)J2 ~ 2 f~~2~ 4 Ia

y 1- q n + f2 +- -f 31  qf 3 2] 0=0

where

-- [ k~ _T . ][ 4T I T 2

f ll= 2 1 + ' [" ]] f 12= 2 + 4 q-- 3 ] ]
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f13= - 2-kT f2l= 1+4A 4 1

fT23 T 3[= (A5)
f2 f22=  1+2 k  k 2[ 2

q q-2 [32 2 =1 -[kT2J
31 = 2 L-T kT f32 =  

2I 1

Equation (A4) represents a hierarchy of waves. Those of the higher order are important at early times

and the disturbances propagate along characteristics of the highest order term, while at long times the

lowest order waves prevail. For a discussion of equations of this type see Whitham 14. The speed of

propagation of the disturbances at long times is seen to be q 4(l + kT/q 2)/2.
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Figure 3.1 The lattice for the four velocity Figure 3.2 The FHP model: All particles have
O HPP model. All lattice links are of equal length the same speed. Better symmetry compared

and all particles have the same speed. A particle to HPP, but spurious conservations with binary
traverses one link length in one unit of time. collisions alone.

r42

5 = <X >
5 M,1<
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Figure 3.3 The nine velocity model. Four par- Figure 3.4 The lattice for the nine velocity
tide types have unit speed, four other particle model: Slow moving particles move along the
types have V2 units of speed and one particle horizontal and vertical links while the fast mov-
type has zero velocity. ing particles move along the diagonals.
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@ Figure 3.5 The binary collisions in the nine velocity model.
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Figure 3.6 Evolution of H = Entogn with time Figure 3.7 Evolution of no, the stagnant par-

for a box of lattice gas. Hydrodynamic quanti- ticle ratio with time for a box of the lattice gas

ties are constant with time and the initial state (kT = 0.5q2; U = = 0; p = 0.3) shows that
was chosen randomly. there is a unique equilibrium distribution of the
.cs rd lparticles.
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Figure 3.8log-log plot of A vs p using Rule set Figure 3.9log-log plot of A vs p using Rule set
1. Note the unphysical increase of mean free 2. Note the similarity of the curves with those

0 path with density above a certain density and in Figure 3.8 at low densities and the marked
the variation of A with temperature. deviations at higher densities.
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Figure 3.10log-log plot of A vs p at different PROBLEM: The two walls are maintained at
velocities using Rule set 1. kT/q2 = 0.40 in different temperatures and the temperature pro-
all the cases. An illustration of Galilean non- file in the lattice gas is sought. The left wall is
invariance. At velocities upto 0.25, the variation maintained at kT/q2 = 0.60 while the right wall
in A due to velocity seems to be small. is maintained at kT/q2 = 0.70. Also the effect

of the interwall spacing L is studied.
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* Figure 3.12 The steady state temperature pro- Figure 3.13 The steady state temperature pro-
files at three different Knudsen numbers. The files using Rule set 2. Conditions are the same
average density is 0.3 particles in all the three
cases. Rule set 1 is used. as before. Note similarity to Figure 3.12
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Figure 3.14 SHOCK PHENOMENA: Flow of the lattice gas into the closed
end of a tube produces a shock. Shocks of different strengths can be formed by
having different initial states.
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Figure 3.15 The density profile across a 1.13 Figure 3.16 The (smoothed) density profiles
Mach shock at an average density of 0.3 particles across a 1.13 Mach shock at an average density
per site. Rule set 1 was used. The density ratio of 0.3 particles per site using Rule set 1 & Rule
e- = 1.12. The smoothing was done by using a set 2. The d..ensi ratio 1
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Figure 3.28 Density profiles across a 1.73 Mach

peFagure 3.17fTe (cosmoothed)Madensityk aNdten shock using the two Rule sets at an average den-

tatteperature shc profiepcrag14 aes shock. Noe sity of 1 particle a site. At these high densities,
that the temperature shock propagates ahead of the two sets of rules simulate different viscosi-
tti



h

0.30 1.10

0.90

V4.15 -Enlogn

0.70

0.00 0.50.

0.30.

-0..10

• -0.3( -0.1( ...

0 300 600 900 1200 0 200 400 600 800 1000 1200

Time Time

* Figure 3.19 The mean velocity in a box de- Figure 3.20 Entropy increases as the system
cays with time. On full reversal at t=600, the equilibrates between t=0 and t=600, but de-
system retraces its path and the initial state is creases going backwards between t=600 and
fully recovered. t=1200.
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Figure 3.21 A small error in the reversal at t Figure 3.22 The small error at t=600 shows the
= 600 effectively prevents any recovery of the instability of the reversed path. The entropy no
macroscopic velocity unlike in Figure 3.19 more decreases like in Figure 3.20


